
CSCI 210: Computer Architecture

Lecture 32: Caches

Stephen Checkoway

Slides from Cynthia Taylor

1



CS History: Delay Line Memory

Mercury memory of UNIVAC I (1951)
CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=64409

• The first computer 
memory systems, used in 
the 1940s for the EDVAC 
and UNIVAC

• Originally used by radar

• Stored a series of audio 
pulses in a liquid medium

• To save the value, repeat 
the pulses after they are 
read



CS History: Delay Line Memory

Mercury memory of UNIVAC I (1951)
CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=64409

• Used mercury as the 
storage medium

• Had to be kept at 104 
degrees F

• Made a sound like a 
human mumbling, giving 
them the name “mumble-
boxes”

• Alan Turing proposed using 
gin as the liquid medium



Memory

• So far we have only looked at the CPU/datapath

• Now we’re going to look at memory



A typical memory hierarchy
CPU

memory

memory

memory

memory

per-CPU cache(s)

shared cache

main memory (RAM)

disk

small expensive $/bit

cheap $/bit

big

fast

slow

registers



Latency
1 ns =  1 billionth of a second
1 ms = 1 thousandth of a second



Caching

• Everything is on disk, very few 
things are in the registers

• Want to avoid going to main 
memory or disk because it’s slow

• Take advantage of how programs 
actually access memory

CPU

per-chip cache(s)

shared cache

main memory

disk



Principle of Locality

• Programs access a small proportion of their address space at 
any time

• Temporal locality

– Items accessed recently are likely to be accessed again soon

– e.g., instructions in a loop, registers spilled to the stack

• Spatial locality

– Items near those accessed recently are likely to be accessed soon

– E.g., sequential instruction access, array data



Library

• You have a huge library with EVERY book ever made.

• Getting a book from the library’s warehouse takes 15 minutes.

• You can’t serve enough people if every checkout takes 15 minutes.

• You have some small shelves in the front office.

Office

Warehouse



Here are some suggested improvements to the library:
1. Whenever someone checks out a book, keep other copies in the front office for a 

while in case someone else wants to check out the same book.
2. Watch the trends in books and attempt to guess books that will be checked out 

soon – put those in the front office.
3. Whenever someone checks out a book in a series, grab the other books in the 

series and put them in the front.
4. Buy motorcycles to ride in the warehouse to get the books faster

Extending the analogy to locality for caches, which pair of changes most closely 
matches the analogous cache locality?

Selection Spatial Temporal

A 2 1

B 4 2

C 4 3

D 3 1

E None of the above

Office

Warehouse



Taking Advantage of Locality

• Store everything on disk

• Copy recently accessed (and 
nearby) items from disk to smaller 
main memory

• Copy more recently accessed (and 
nearby) items from main memory 
to cache

CPU

per-chip cache(s)

shared cache

main memory

disk



We know SRAM is very fast, expensive ($/GB), and 
small.  We also know disks are slow, inexpensive 
($/GB), and large.  Which statement best describes 
the main goal of caching.

       Selection Role of caching

A Locality allows us to keep frequently touched data in 

SRAM.

B Locality allows us the illusion of memory as fast as 

SRAM but as large as a disk.

C SRAM is too expensive to make large – so it must be 

small and caching helps use it well.

D Disks are too slow – we have to have something 

faster for our processor to access.

E None of these accurately describes the role of cache.



Memory Access

• Use main memory 
addresses

• When looking for data, 
check
– 1. caches (happens 

automatically in hardware)

– 2. main memory (happens 
automatically in hardware)

– 3. disk (requires OS support)

CPU

per-chip cache(s)

shared cache

main memory

disk



Memory Hierarchy Terms

• Block: unit of copying

– May be multiple words

– On x86-64, a block is 64 bytes

• Cache Hit: data in the cache

– Hit ratio: hits/accesses

• Cache Miss: data not in the cache

– Time taken: miss penalty

– Miss ratio: misses/accesses
= 1 – hit ratio



High-level cache strategy

• Divide all of memory into 
consecutive blocks

• Copy data (memory  
cache) one block (e.g.,  64 
bytes) at a time

• To access data, check if it 
exists in the cache before 
checking memory

Memory

32 A0 5C …

00 00 00 …

00000000

00000020

00000040

00000060

00000080

000000A0

000000C0

000000E0

00000100

00000120

…

FFFFFFE0

Data Cache

FE FF 3C …

32 A0 5C …

00 00 00 …



Memory addresses, block addresses, offsets

• Imagine we have blocks of size 32 bytes (not bits!)

• Every byte of memory can be specified by giving

– A (32 – 5)-bit block address (in purple)

– A 5-bit offset into the block (in green)

• To read a byte of memory

– find the appropriate 32-byte block in either cache or memory using 
the block address

– Use the offset to select the appropriate byte from the block

0 0 0 1 0 1 0 1 1 1 0 0 1 0 0 1 1 0 1 0 1 1 0 0 1 0 1 0 0 0 1 1



With a block size of 64 bytes, how many bits is the 
block address? How many bits is the offset? 

(Assume 32-bit addresses.)

A. Block address size is 32 – 4 = 28 bits; offset size is 4 bits

B. Block address size is 32 – 5 = 27 bits; offset size is 5 bits

C. Block address size is 32 – 6 = 26 bits; offset size is 6 bits

D. Block address size is 32 – 5 = 27 bits; offset size is 4 bits

E. Block address size is 32 – 5 = 27 bits; offset size is 6 bits



Number of offset bits

• Block sizes are powers of 2

• For a block size of 2m bytes, the number of offset bits is m

– 16-byte block size: 4 offset bits

– 32-byte block size: 5 offset bits

– 64-byte block size: 6 offset bits

Block address Offset



Where is a block of memory stored in cache?

• Given a memory address, we 
can divide it into a block 
address and an offset

• Where in cache is the block 
stored?

• Basic problem: Cache is 
smaller than main memory

Data Cache

FE FF 3C …

32 A0 5C …

00 00 00 …

Address Memory

00000000

00000020

00000040 32 A0 5C …

00000060

00000080

000000A0 00 00 00…

000000C0

000000E0

00000100

00000120

00000140 7F 40 61 …

…

FFFFFFE0



Direct-mapped cache

• Block location in cache determined by block address

• Direct mapped: only one possible location for a given block address

– Index = (Block address) modulo (#Blocks in cache)

• #Blocks is a power of 2

• Direct-mapped cache is 
essentially an array of blocks

• Use low-order address bits 
of block address to index it



Problem: Collisions

• Many block addresses map 
to the same cache location

• How do we know which 
particular block is stored in 
a cache location?
– Store block address as well 

as the data

– Actually, only need the high-
order bits

– Called the tag

Address Memory

00000000

00000020

00000040 32 A0 5C …

00000060

00000080

000000A0

000000C0

000000E0

00000100

00000120

00000140 7F 40 61 …

…

FFFFFFE0

Data

FE FF 3C …

32 A0 5C …

00 00 00 …



Memory addresses, block addresses, offsets

• Block size of 32 bytes (not bits!)

• 8-block cache (this is purely an example!)

• Each address
– A (32 – 5)-bit block address (in purple and blue)

– A 5-bit offset into the block (in green)

• Block address can be divided into
– A (32 – 3 – 5)-bit tag (purple)

– A 3-bit cache index (blue)

0 0 0 1 0 1 0 1 1 1 0 0 1 0 0 1 1 0 1 0 1 1 0 0 1 0 1 0 0 0 1 1



Cache layout (so far)

• Tag stores high-order 
bits of address

• Data stores all of the 
data for the block (e.g., 
32 bytes)

Tag Data

000042 FE FF 3C 7F …

001234 32 A0 5C 21 …

000F3C 00 00 00 00 …



If we have a block size of 64-bytes and our cache 
holds 256 entries how large are the tag, index, and 
offset? 

Tag size (bits) Index size (bits) Offset size (bits)

A 32 – 3 – 8 3 8

B 32 – 3 – 6 3 6

C 32 – 6 – 8 6 8

D 32 – 8 – 6 8 6

E 32 – 8 – 8 8 8

tag index offset



High-level cache strategy

• Divide all of memory into 
consecutive blocks

• Copy data (memory  
cache) one block at a time

• Cache lookup:
– Get the index of the block in 

the cache from the address

– Compare the tag from the 
address with the tag in the 
cache

Tag Data

000042 FE FF 3C …

000000 32 A0 5C …

000F3C 00 00 00 …

000

001

010

011

100

101

110

111

Address Mem

00000000

00000020

00000040 32 …

00000060

00000080

000000A0

000000C0

000000E0

00000100

00000120

00000140 7F …

…

FFFFFFE0



How do we know if it’s in the cache?

• What if there is no data in a location?

– Valid bit: 1 = present, 0 = not present

– Initially 0



Direct-mapped cache layout

• Valid stores 1 if data is 
present in cache

• Tag stores high-order 
bits of address

• Data stores all of the 
data for the block (e.g., 
32 bytes)

Valid Tag Data

1 000042 FE FF 3C 7F …

0

1 001234 32 A0 5C 21 …

0

0

1 000F3C 00 00 00 00 …

0

0



High-level cache strategy

• Divide all of memory into 
consecutive blocks

• Copy data (memory  
cache) one block at a time

• Cache lookup:
– Get the index of the block in 

the cache from the address

– Check the valid bit; compare 
the tag to the address

V Tag Data

1 000042 FE FF 3C …

0

1 000000 32 A0 5C …

0

0

1 000F3C 00 00 00 …

0

0

Address Mem

00000000

00000020

00000040 32 …

00000060

00000080

000000A0

000000C0

000000E0

00000100

00000120

00000140 7F …

…

FFFFFFE0



Example

• 64 blocks, 16 bytes/block

– To what cache index does address 0x1234 map?

• Block address = 0x1234/16 = 0x123

• Index = 0x123 modulo 64 = 0x23

• No actual math required: just select appropriate bits from 
address!

Tag Index Offset

03491031

4 bits6 bits22 bits

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 0 1 0 0



Memory access; different example!



Cache behavior

• Lookup block in cache by index bits from the address

• If the the block’s valid bit is set and the tag matches the tag 
bits from the address (a hit!), return the data

• If the block’s valid bit is not set or the tag doesn’t match the 
tag bits from the address (a miss!)

– Copy the data from main memory into the cache block

– Set the block’s valid bit to 1 and tag to the tag bits of the address

– Return the data



Direct Mapped Cache

tag data

Four blocks, each block holds four bytes

00 00 01 00
00 00 10 00
00 00 11 00
00 00 01 00
00 00 10 00
00 01 01 00
00 00 01 00
00 00 10 00
00 01 01 00
00 01 10 00
00 00 11 00
00 00 10 00
00 00 01 00

M
M
M
H
H
M
H
H
H   
M 
M
H
M

M
M
M
H
H
M
M
H
H   
M 
H
H
H

M
M
M
H
H
M
M
H
M   
M 
H
M
M

M
H
M
H
H
M
H
H
H   
M 
H
H
M

A B C D E None are correctbyte addresses

00

01

10

11

data

x
y
z
x
y
w
x
y
w
u
z
y
x



How do we know how big a specific block in the 
cache is?

A. Each block in the cache stores its size

B. The length of the tag in the cache determines the block size

C. The most significant bits of the address determine the block 
size

D. The least significant bits of the address determine the block 
size

E. For any given cache, the block size is constant



Reading

• Next lecture:  More Caches!

– Section 6.2

35


	Slide 1: CSCI 210: Computer Architecture Lecture 32: Caches
	Slide 3: CS History: Delay Line Memory
	Slide 4: CS History: Delay Line Memory
	Slide 5: Memory
	Slide 6: A typical memory hierarchy
	Slide 7: Latency
	Slide 8: Caching
	Slide 9: Principle of Locality
	Slide 10: Library
	Slide 11
	Slide 12: Taking Advantage of Locality
	Slide 13
	Slide 14: Memory Access
	Slide 15: Memory Hierarchy Terms
	Slide 16: High-level cache strategy
	Slide 17: Memory addresses, block addresses, offsets
	Slide 18: With a block size of 64 bytes, how many bits is the block address? How many bits is the offset? (Assume 32-bit addresses.)
	Slide 19: Number of offset bits
	Slide 20: Where is a block of memory stored in cache?
	Slide 21: Direct-mapped cache
	Slide 22: Problem: Collisions
	Slide 23: Memory addresses, block addresses, offsets
	Slide 24: Cache layout (so far)
	Slide 25: If we have a block size of 64-bytes and our cache holds 256 entries how large are the tag, index, and offset? 
	Slide 26: High-level cache strategy
	Slide 27: How do we know if it’s in the cache?
	Slide 28: Direct-mapped cache layout
	Slide 29: High-level cache strategy
	Slide 30: Example
	Slide 31: Memory access; different example!
	Slide 32: Cache behavior
	Slide 33: Direct Mapped Cache
	Slide 34: How do we know how big a specific block in the cache is?
	Slide 35: Reading

